

EXOOPSTM - MISSION DESIGN

Mission design made easy

Document reference Version number (date) Author Verified Approved

EXO_DCM_PRE_200514_1MKF V1 (14 may 2020) Mikael Fillastre – Lead Software Engineer Paul Lascombes – Chief Scientist David Henri _ CEO

WE GUIDE YOU THROUGH ALL THE STEPS OF YOUR MISSION

ALL THE TOOLS YOU NEED TO DESIGN, DEPLOY AND OPERATE YOUR SPACE MISSION IN ONE SINGLE Software

Constellation design for optimized performances

Optimisation of launch scenario

Optimisation of propulsion system, target orbit, available power, mass of the satellite, etc.

Advanced mission design of the manoeuvres, intricacies with the spacecraft systems, operations simulation

ExoOPS™ – *Mission Design*INTRODUCTION

 $ExoOPS^{TM} - Mission Design$ is our custom designed and built operational software for mission simulations – with an emphasis on propulsion. It is cloud-based, user friendly and gives users unique insights into mission & propulsion planning.

Mission Optimization & Insights

- Compare the impact of different propulsion solutions on your system, your mission, your business case
- Generate reports with ΔV , duration, power consumption, duty cycle, propellant use, thrust & attitude sequence, you can also create your own metrics
- Compute your manoeuvres with optimized thrust strategies
- Analyse the precise impact of propulsion on attitude, power system, etc.

Optimized Launch Strategies

- Analyse the impact of different missions, such as RAAN* Phasing or altitude transfers, on your operation
- Compute thousands of different scenarios in seconds
- Analyse orbital deployment timings and costs
- Perform trade-off analysis between rideshare followed by propulsion manoeuvre and dedicated launch scenarios

Access Anywhere & Easy to use

- Intuitive software and user-friendly interface make the platform easy to use, even for non experts
- Cloud based software, with local data storage options
- Time-based licenses, frequent updates automatically included

Modules CONSTELLATION DEPLOYMENT STRATEGIES ANALYTICAL MISSION NUMERICAL MISSION

*RAAN = Right Ascension of the Ascending Node

FOUR DIFFERENT MODULES FOR DIFFERENT APPLICATIONS

CONSTELLATION

With the Constellation Module, one can easily prototype the deployment of a constellation of satellites. This module facilitates the analysis of the performances of the constellation and its ability to deliver a given level of service, in terms of coverage, revisit rates and communication with a ground station network.

DEPLOYMENT STRATEGIES

The Deployment Strategies Module allows to analyze hundreds of different launch scenarios involving different launchers and propulsion systems automatically. The optimization of the scenario can be chosen depending on the user's KPI.

N

ANALYTICAL MISSION

The Analytical Mission Module allows almost instantaneously to simulate mission performances (ΔV , duration, power consumption, duty cycle, propellant use, number of burns...) for thousands of different scenarios with different parameters: propulsion system, target orbit, available power, mass of the satellite, etc.

NUMERICAL MISSION

The Numerical Mission Module allows to precisely simulate the satellite's trajectory thanks to state-of-the-art integration algorithms. A detailed system description is provided in this module (define satellite geometry, solar panels and battery). Time histories of all orbital and system parameters are provided with a customizable step.

Modules presentation CONSTELLATION

The Constellation Module helps Systems or Sales Engineers to size a constellation of satellites identifying the orbit and geometry that best fit a given mission.

The Constellation Module can be used to perform two types of studies:

- Revisit statistics over a user-defined Earth mesh;
- Age of information and data transmission latency analysis over a user-defined ground station network.

The analytical algorithms we developed at Exotrail to simulate constellations of satellites are very fast and can handle hundreds of satellites over a simulation duration of several days or weeks. This enables the user to rapidly iterate on his design choices and to perform trade-offs between different coverage patterns.

Results examples **CONSTELLATION**

Ø

Mean duration between revisits

Age of information statistics, ground stations and ground tracks

Detailed workflow CONSTELLATION

Modules presentation **DEPLOYMENT STRATEGIES**

The Deployment Strategies Module allows engineers to perform a preliminary analysis of a constellation deployment scenario, in order to evaluate its cost and the time before the full operational capability.

exotrail

A deployment scenario is modelled as a succession of launches, with several spacecrafts in each launch. A plane change maneuver is computed for each spacecraft so that it reaches its operational plane within the constellation's geometry.

The Deployment Strategies Module can be used to perform two types of studies:

- Evaluate the cost and the duration of a user-defined scenario: launches, satellites per launches, maneuver for each satellite.
- Find the optimal strategy taking all available launches into account with user defined constraints. All possible and realistic deployment configurations will be computed and sorted.

Configuration and results examples **DEPLOYMENT STRATEGIES**

Shared configuration	
Total daily cost of the constellation * (k€/day)	
2	
RAAN manoeuvres optimization type *	
Time	•
•	
400	
	2

		Plane 1 (0h) Spacecrafts s Spacecrafts r		Plane 2 (3h) Spacecrafts set : 2 Spacecrafts remaining : 0		Plane 3 (6h) Spacecrafts set : 2 Spacecrafts remaining : 0		Plane 4 (9h) Spacecrafts set : 0 Spacecrafts remaining : 2		Plane 5 (12h) Spacecrafts set : 0 <mark>Spacecrafts remaining : 2</mark>			
Launch Rideshare 550 SSO 20kg	•	Î	2	2	×	0	*	0	•	0	*	0	÷
Launch Rideshare 450 SSO 2000kg	•	Î	4	0	×	2	×	2	×	0	*	0	¢

Rows per page: All 🔻 1-2 of 2 <

Detailed View Launch configurations 1: 6 spacecrafts launched on 3 planes at 500 km. Complete constellation available at 2021-12-15. Total cost = 1 758 k€, Launch cost = 1 000 k€, Deployment duration cost = 758 k€, Propulsion cost = 141 k€. 3 launch(es) • 2020-12-01 (Rideshare 550 SSO 20kg / ExoRocket / RIDESHARE / 550 km) : 2 spacecrafts on the following orbital planes : 2 on plane 2 (△RAAN 115deg) . Launch cost : 200 k€ . Propulsion cost : 29 k€ . 2021-02-01 (Rideshare 600 SSO 800kg / ExoRocket / RIDESHARE / 600 km) : 2 spacecrafts on the following orbital planes : 2 on plane 1 (ΔRAAN 131.2deg). Launch cost : 400 k€. Propulsion cost : 59 k€ • 2021-04-01 (Rideshare 450 SSO 2000kg / ExoRocket / RIDESHARE / 450 km) : 2 spacecrafts on the following orbital planes : 2 on plane 3 (△RAAN -80.7deg) . Launch cost : 400 k€ . Propulsion cost : 53 k€ 2: 6 spacecrafts launched on 3 planes at 500 km. Complete constellation available at 2022-02-03. Total cost = 1 859 k€, Launch cost = 1 000 k€, Deployment duration cost = 859 k€, Propulsion cost = 164 k€ 2 launch(es) • 2020-12-01 (Rideshare 550 SSO 20kg / ExoRocket / RIDESHARE / 550 km) : 2 spacecrafts on the following orbital planes : 2 on plane 3 (△RAAN 160deg) . Launch cost : 200 k€ . Propulsion cost : 34 k€ . • 2021-02-01 (Rideshare 600 SSO 800kg / ExoRocket / RIDESHARE / 600 km) : 4 spacecrafts on the following orbital planes : 2 on plane 1 (△RAAN 131.2deg), 2 on plane 2 (△RAAN 176.2deg) . Launch cost : 800 k€ Propulsion cost : 129 k€ 3: 6 spacecrafts launched on 3 planes at 500 km. Complete constellation available at 2022-02-03. Total cost = 1 859 k€, Launch cost = 1 000 k€, Deployment duration cost = 859 k€, Propulsion cost = 152 k€. 3 launch(es) Exploitation date 2020-12-01 (Rideshare 550 SSO 20kg / ExoRocket / RIDESHARE / 550 km) : 2 spacecrafts on the following ~ [2022-05-16 ... 2022-06-17] cost÷31 k€ RESULTS • 2021-02-01 (Rideshare 600 SSO 800kg / ExoRocket / RIDESHARE / 600 km) : 3 spacecrafts on the following Propulsion cost : 94 k€ · 2021-04-01 (Rideshare 450 SSO 2000kg / ExoRocket / RIDESHARE / 450 km) : 1 spacecrafts on the follow Total cost [15000 ... 5014320] k€ 4: 6 spacecrafts launched on 3 planes at 500 km. Complete constellation available at 2022-02-03 Total cost = 1 935 k€, Launch cost = 1 200 k€, Deployment duration cost = 735 k€, Propulsion cost = 200 k€ 1 launch(es) 2021-02-01 (Rideshare 600 SSO 800kg / ExoRocket / RIDESHARE / 600 km): 6 spacecrafts on the followir Launch cost 11 -138.8deg) . Launch cost : 1 200 k€ . Propulsion cost : 200 k€ . [10 000 ... 5 009 000] k€ CONFIGURATIONS Propulsion cost O) EXPORT VIEW [500 ... 993.587] k€

List of detailed scenarios of an optimisation

Deployment duration cost [5 000 ... 5 320] k€

User defined scenario

SAVI

Detailed workflow DEPLOYMENT STRATEGIES

Modules presentation ANALYTICAL MODULE

The Analytical Module allows to perform rapid analysis of multiple scenarios involving propulsion. It is based on fast analytical models which accurately approximate the real manoeuvres.

The Analytical Module allows to compute mission performances (ΔV , duration, power consumption, duty cycle, propellant, number of firings...) for thousands of different scenarios with different parameters: propulsion system, target orbit, available power, mass of the satellite, etc.

Specifically, this module can be used to:

N

- Evaluate how different types of propulsion performance (thrust-to-power ratio, specific impulse, ...) impact the mission financials in order to choose the right propulsion system;

- Simulate and assess the key design principles of many propulsion missions including orbital transfer, plane change, station-keeping, etc.

Optimize the profile of your mission through **parametric analysis**

Most of parameters can be selected within a range of values, either for the spacecraft (e.g. mass, propulsion system, power generated,...) or for the mission (orbital parameters, optimization constraints, ...). This enables a systems engineer to rapidly design and optimize a satellite and a mission profile using propulsion.

Results examples **ANALYTICAL MODULE**

N

Example of a dashboard for parametric RAAN studies

Compare propulsion systems

Detailed workflow **ANALYTICAL MODULE**

N

Modules presentation **NUMERICAL MODULE**

The **Numerical Module** provides precise insights on the early operations and the deployment of a satellite constellation. The two main differences compared with the Analytical Module are:

Results vary over time (the entire manoeuvre is simulated);

The satellite definition is more detailed and accurate, including solar panels, satellite's geometry, attitude...

Using the Numerical Module you can:

- Define the satellite's geometry and its power system (including battery and solar panels)
- Simulate manoeuvres (including non-coplanar transfers, RAAN phasing etc..) taking attitude changes into account
- Consider the influence of perturbations (Earth potential, atmospheric drag, solar radiation pressure and third body) and eclipses on your manoeuvre strategy
- Perform optimized manoeuvres by tuning the parameters of your propulsion system
- Compute the time history of your results (orbital parameters, attitude angles, battery state...)

Results examples **NUMERICAL MODULE**

Time history for semi-major axis, inclination and thrust direction

Time history for battery state and consumption

Detailed workflow **NUMERICAL MODULE**

(-/~

VALIDATION AND RELIABILITY

- \checkmark Developed using continuous integration and covered by non regression tests
- The numerical simulation is based on the space mechanics library Orekit¹, the well-known open source library used by Airbus, ESA, Thales Aliena Space, Eumetsat, ...
- ✓ The results and algorithms have been validated against the literature and external reliable software (GMAT, CelestLab)
- $\checkmark\,$ Used and verified by internal and external users

robit

User interface **INTUITIVE USER EXPERIENCE**

		Analytical Missions												
lission	Sean	Station keeping 2 years	/	(ji		Q		NE	EW MIS	SION		DELE	TE ALL	
		Sequence	1	ø	ŵ									
iame 个	Model	Explore RAAN	1	¢	Î	tion	Last update	Action	15					
nalyze Deployment Strategies	Deployment Miss	Compare thrusters on RAAN 1h30 Numerical Missions	/	Ø	Ŧ		2020-03-10 09:40:05	0	1	D	<			
compare thrusters on RAAN 1h30 *	Analytical Missior	System analysis	1	ø	ij.		2020-03-10 06:03:11	0	1		<	•		
erno constellation	Constellation Ana	Propulsion System Optimization Constellation Analysis	/	ø	W		2020-03-10 09:28:14	0	1	P	<		Î	
emo Deployment Computation	Deployment Miss	Demo constellation	1	ø	ij.		2020-03-10 09:35:46	0	1		<	•		
xplore RAAN *	Analytical Missior	Deployment Missions Analyze Deployment Strategies	/	18	Ŧ		2020-03-10 08:49:49	0	1	F	<			
ropulsion System Optimization	Numerical Missio	Demo Deployment Computation	1	ø	ŵ		2020-03-10 09:16:30	0	1	F	<		Î	
equence	Analytical Missior			SEE A	ш.		2020-03-10 08:51:49	0	1	P	<			
tation keeping 2 years *	Analytical Mission	LEO Station Keeping					2020-03-10 09:10:51	0	1	Ē	<			
ystem analysis	Numerical Mission	Orbital Transfer					2020-03-10 09:24:00	0	1	-	<	•		

Quick access to missions and objects

lame * Spacecraft comparing thrusters				
otal mass * (kg) nin: 20 max: 100				🗹 Range
Min 20		Max. 100		
Range type Number	•	Number of points 10		
			0	Range

Define ranges of values to compare multiple scenarios

na * U		
e * X		- 0
rigth * (cm)	y length * (cm) 30	s length * (cm) 20
hruster orientation		
hruster axis in satellite frame 🔞	¥*	2.
	0	0
Solar array		
olar array type * Deployable rotating	. 0	Rotating deployable solar array The user must specify the solar array axis of rotation in the satellite frame. The normal vector is computed at a given
ixis in satellite frame 🔞		date in order to optimize the panel's enlightenment.
* <u>y</u> *	Z *	Rotation
Definition type *	-	axis (

Example of input form

User interface COMPREHENSIVE DOCUMENTATION

Complete technical documentation and nomenclature

Documentation

Technical documentation

Follow this link to view the full technical documentation.

Fields bounds

Most of the fields do not accept any value in forms. An error message will be displayed when the inputs do not respect the requirements. Below is a summary of all limits on fields grouped by forms. Note that only the fields with bounds are listed.

Notation:

separator between lower and upper bounds

lower bound excluded / upper bound included

lower bound included / upper bound excluded

- +∞[
- no maximum value
- J-∞ no minimum value
-]0; +∞[

any positive value bigger than 0

Constellation deployment mission	Unit	Range	
RAAN manoeuvres ∆Vmax	m/s]0; +∞[
RAAN manoeuvres target duration	days]0.01; +∞[
Duration cost	k€/day	[0; +∞[
Maximum number of spacecrafts per launch		[1; 500]	

×

Video tutorials which covers all the features of ExoOPS™ - Mission Design

STRICTLY PRIVATE & CONFIDENTIAL EXOL/COL

User interface 3D VISUALIZATION

User interface DETAILED RESULTS

_							_			
	Detailed View					×		Export Results		×
	RAAN Phasing	Ø ^	Spacecraft	^	Initial orbit	^		Results are exported in the order they are selected.		ġ
	ΔV Used propellant mass Mission duration Thrust duration	[150.11 400] m/s [760 1 998] g [34.48 327.03] days [413.79 1 088.76] h	Name Mass Drag area Drag coefficient	Sat Micro 50 kg 1 200 cm² 2.2	Name Type Altitude Semi-major axis	600 SSO Circular 600 km 6 978.136 km		 Select All Final Maneuver Final Orbit Initial Maneuver Initial Orbit 	Additional configuration Export orientation Horizontal Vertical	
	Manoeuvring duration Thruster mean duty cycle Total impulse	[34.48 90.73] days [7.01 50] % [7 448.2 19 597.6] N.s	Orbital average power Orbital duty cycle Mean duty cycle	50 W 50 % 50 %	Sun-synchronous orbit Inclination Keplerian period	true 97.79 deg 1.61 h		✓ □ Spacecraft □ Name □ Mass	CSV delimiter Semicolon Comma	
	Estimated number of burns Minimum number of burns Maximum number of burns	[1045 2820] [1036 2745] [1054 2898]	Mean thrust availability Thruster	50 %	Mean nodai period dRAAN/dt dLTAN/dt	1.61 h 0.986 deg/day 0 h/day		Mean duty cycle Mean thrust availability Orbital average power Orbital duty cycle	Tab Float separator Point	
	Mean burn duration estimation Drag perturbation enabled ΔRAAN	[23.17 24.4] min faise [-30 30] deg	Costs @		Keplerian mean motion Velocity	5 361.621 deg/day 7 557.87 m/s		Drag area Drag coefficient Drag model defined	O Comma	
	Initial manoeuvre duration Coasting duration Final manoeuvre duration	[14.98 46.28] days [0 281.21] days [15.3 44.74] days			Coasting orbit	~		✓ □ Thruster□ Name□ Type		
	Coasting altitude	[283.812 761.834] km			Final orbit	·		 Nominal thrust Specific impulse 		•

Detailed results view

Custom results export in CSV files

ROADMAP

2020

2021

2022

Telecom simulation: define your ground segment network and add telecommunication requirements during the simulation.

Payload simulation: configure your payload and indicate your area of interest.

Standard data format support: integrate ExoOPS™ - *Mission Design* with your other software tools

More constellations analysis results: global timeline and detailed events per mesh

Improved launch strategies: group, filter and navigate inside launch scenarios

AOCS simulation: take into account your spacecraft agility and constraints on attitude

Constellation simulation: visualize all the spacecrafts of your constellation in a single simulation

Optimized trajectories: change all the orbital elements with the minimum ΔV budget or the minimum duration

Optimal launch strategies: minimize your launch costs by taking custom criteria into account

Optimal constellation configuration: minimize the number of spacecrafts needed and improve the performances of your constellation

Spacecrafts replacement strategies: long term vision of your spacecraft fleet

HOW YOU CAN GET EXOOPS[™] - Mission Design

REQUEST A DEMO

It will be a pleasure for our software development team to setup a demonstration of all the features included in ExoOPS[™] for you to understand how our software can meet your needs.

×↑ S×

GET A FREE TRIAL VERSION

Once you are convinced by the demonstration, you can request a two-week trial period for a demonstration version of the software. This version contains all features and will allow you to play around with ExoOPS[™] and see what it is capable of.

PURCHASE YEARLY LICENSES

ExoOPS[™] uses a per-year / per-user licencing model. It is a Software-As-A-Service model: all the new functionalities developed by our Software Development team will automatically be included in the package you purchased.

ExoOPS[™] is natively cloud-based, but hosting onpremises is possible.

CONTACT US FOR MORE INFORMATION: www.exotrail.com

exoops@exotrail.com

EXOOPSTM – OPERATIONS

Operation software to make propulsion easy

ExoOPS™ – *Operations* **KEY POINTS**

ExoOPS[™] - *Operations* is a software linked with your Mission Control Centre. It manages the propulsion systems as well as all the flight dynamics features. It will help you to minimize your launches and operations costs, and to improve the performances of your constellation.

Orbit & maneuver restitution

Thruster performance analysis

Low duty cycle planning

Automated thrust plan creation

Maneuver planning at the constellation level

Collision avoidance management

Based on ExoOPS^M – *Mission Design* interface and algorithms

Simulation environment from current state as input

Unforeseen events detection and tracking

Thruster in-flight thrust calibration

Efficient and representative mission planning

Intuitive and not requiring a lot of operator's time

Handle complex maneuvers with simple mission requirements

Notification mechanism with correction maneuver suggestion

Same intuitive interface, smooth transition from design to operations

Fast iteration & understanding spacecraft/propulsion interactions

ExoOPS™ – *Operations* **OVERVIEW**

ExoOPSTM - *Operations* is a software which is the interface between your mission control centre and ExoOPSTM - *Mission Design*., our custom designed and built operational software for mission simulations – with an emphasis on propulsion. It gathers useful data from the spacecraft telemetry – position, batteries state of charge, propulsion system status, etc. When manoeuvres are specified, ExoOPSTM - *Operations* will call ExoOPSTM - *Mission Design* to compute the associated manoeuvre sequence. All the commands and associated manoeuvres computations are tracked, can be easily accessed and, if you are using an ExoMGTM thruster, the telecommands are automatically created in the right format for the propulsion unit.

Several modules can be acquired separately – ExoOPS[™] can also serve as the complete flight dynamics system for your mission, not only for propulsion purposes.

MODULAR ARCHITECTURE

Modules	Features	
TM / TC	Data visualization (TM)	AVAILABLE NOW
	Telecommand generation (TC)	AVAILABLE NOW
Orbit management	Orbit restitution (TLE / GPS data must be supplied)	2020
	Orbit propagation (with perturbations: earth potential, third body, drag, sun radiation pressure)	AVAILABLE NOW
	Simulate and compute maneuvers (station keeping, constellation geometry, end-of-life)	AVAILABLE NOW
Propulsion	Conversion of maneuvers into flight plan (thrust direction and amplitude)	2020
 ιτομαιδιοπ	Maneuver performance estimation (comparison between predicted and determined performance)	2020
	Schedule of periodic maneuvers (e.g.: weekly station keeping instruction)	2020
	Adapt constellation geometry to increase performances	AVAILABLE NOW
Constellation	Ground station network (data up/down link capacity, spacecraft pointing, minimum pass duration)	2020
GUIISTEIIATION	Satellite propagation to detect events (point of interest, ground station communication)	2020
	Constellation maneuvers (e.g.: station keeping, geometry change)	2021
Debris & Collision	Collision avoidance	2021

STRICTLY PRIVATE & CONFIDENTIAL EXOL/COL

ROADMAP

2021

2022

2023

Constellation maneuver: lower the operations cost by controlling all the spacecraft together.

Plan, launch and maneuver for a spacecraft deployment: all the steps from the ground to the operational orbit.

Automated constellation operation: either to maintain or to change your constellation

Automated maneuver correction: compare the predictions to measure and adapt the next flight plans.

Constellation deployment: deploy a whole constellation

Constellation station keeping: maintain the initial quality of service

Collision avoidance: be notified in case of alert. Accept or edit the proposed maneuver.

Optimized station keeping for spacecrafts: set your operational constraints and lower the propellant consumption **Constellation collision avoidance:** analyze the risks inside your constellation and adapt the repartition of the spacecrafts

VALIDATION AND RELIABILITY

- Developed using continuous integration and covered by non regression tests
- ✓ Developed in close relation with the thrusters' development team
- $\checkmark\,$ Used internally for our demonstration mission
- ✓ All space mechanics computations are made through ExoOPS[™] *Mission Design*. This software is already used by prime customers such as Eutelsat. It is based on the space mechanics library Orekit¹, the famous open source library used by Airbus, ESA, Thales Aliena Space, Eumetsat, ...
- ✓ The results and algorithms have been validated against the literature and well-known reliable software (GMAT, Celeslab)

Instit

INTERFACES

ExoOPSTM – Operations is a cloud-based software linked to ExoOPSTM – Mission Design. It can be used with our user interface or with a REST API. The required inputs are :

the spacecraft model (thruster, power management, shape, AOCS),

• for each manoeuvre:

- spacecraft state: battery level, remaining propellant. It can be provided by the user, read from TM, or evaluated from the last manoeuvre.
- spacecraft position (orbit + date): it can be provided by the user, or evaluated by processing orbit determination on the TM.
- manoeuvre configuration: e.g. target orbit.

The manoeuvres processing will generate flight plans : sequence of thrust & required attitude at the time of thrust.

If the TC library of the propulsion system is available (which is the case with our ExoMG^M propulsion systems), the flight plan can be translated into TC directly in ExoOPS^M – *Operations*.

The flight plan can be automatically sent to the Mission Control Center or retrieved from the API.

DEPLOYMENT OPTIONS

ExoOPSTM – Operations is a SaaS application with a dedicated instance for each customer. Additional options can be chosen to increase the safety level and protect your data.

Baseline package

Hosted on our private cloud provided by OVH¹

Additional options

VPN access

Database hosted by user

Telemetries dashboard USER INTERFACE

Telecommands creation USER INTERFACE

ExoOPS - Mission O	Operation			c d		200323C00324B00325300325A003	
	Telecommands						375A375A37B9285A375A000000002C0A0A00000 CLOSE
			GENERATE	TELECOMMAND		Fluidic	^
netry TM table	Mission	~	Heaters	~		Voie anode SV selection	Fluid_Flow_to_Press_Ratio_Map(Anode[[3] Coef_B 0
Plots and charts						Voie anode regulation mode Idle	Fluid_Flow_to_Press_Ratio_Map[Anode][4].temp 60
Upload log files	Fluidic	~	PPU	×		Voie cathode SV selection	Fluid_Flow_to_Press_Ratio_Map[Anode][4].Coef_A 0
nmands TC generation						Voie cathode regulation mode Idle	Fluid_Flow_to_Press_Ratio_Map[Anode][4].Coef_B
uration	Safe limits	~	EOL PASSIVATION	~		BKS anode activation	Fluid_Flow_to_Press_Ratio_Map[Cathode][0].temp -20
Settings						Facteur de correction boucle ouverte Anode	Fluid_Flow_to_Press_Ratio_Map[Cathode][2].Coef_A
TM / TC config file					1	Facteur de correction boucle ouverte Cathode	Fluid_Flow_to_Press_Ratio_Map[Cathode][2].Coef_B
						r Fluid_Flow_to_Press_Ratio_Map[Anode][3].Coef_A 0	

STRICTLY PRIVATE & CONFIDENTIAL EXOL/COL

Flight plan management **USER INTERFACE**

• ExoOPS - Operations						\$	с 9				ExoOPS - Operations
	Flight Plans list										Flight Plans
C.	Search			<u>Q</u>		E CREATE A NEW FLIGH	IT PLAN				
Telemetry	Comment	Execution date	Status	Plannification mode	Saved at ↓	Action					Generated script
TM list	~	2020-02-29T17:31:00.000Z	SCHEDULED	NONE	28 February 2020 (03:13	РМ) 🖉 🧿					1582997460
Upload log files	 My FP 		DRAFT	NONE	24 February 2020 (04:48	РМ) 🕜 🔳 🤌 🤅	60				^a AOCS Attitude control mode to X axis ₍ EPS Exotrail power supply ON
Telecommands					Rows pe	ExoOPS - Operation	IS			🧹 C 🖯	⁶ delay 2000 ∢ csp txx 07 500
🔀 TC list							Flight Plans		/		00001E1A0E6465005A5C005A5C006A6B001100000000000000000000007017581B3200323C00324B0032
🗊 Flight Plan											5200325A00323200323C00324B00325200325A0032010105050000DC05140000050000000000001400003 c000F0014001301B8285A375A375A375A375A37B8285A375A375A375A375A375A375A375A375A375A37
Configuration											[©] 000002C0A0A0000DFA00CAFE delay 6000
Settings								GENERATE SCRIPT	E RESET FORM		csp txrx 07 500
Configuration files						TM list Plots and charts		Generale Script			00001E1A0E6465005A5C005A5C006A6B00110000000000000000000000007017581B3200323C00324B0032 5200325A00323200323C00324B00325200325A0032010105050000DC0514000005000000000001400003
Time conversions						Upload log files	Comment		Attitude mode VELOCITY		C000F0014001301B8285A375A375A375A375A375A37B8285A375A375A375A375A375A375A375A375A375A37
		-			. Tele						delay 100000
					2	TC list	Execution date 2020-02-29		Execution time 18:31		EPS Exotrail power supply OFF AOCS Attitude control mode OFF
						Flight Plan					X CLOSE
					۲۰۰۰ Con	liguration Settings			NODE 🛜 ADD TC		
					c	•	Delay (ms)	Action Type	Data	Actions	
					Too			POWER_MODE	ON		Rows per page: 10 🔫 1-4 of 4 < >
					C	Time conversions	2000		TC_ACTION		
							6000		TC_ACTION		
							100000	POWER_MODE	OFF		
									Rows per page: 10 👻	1-4 of 4 < >	
					-						STRICTLY PRIVATE & CONFIDENTIAL EXOLO